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A statistical theory of an excitable membrane is proposed under the 
assumptions that the membrane is composed of an ensemble of a number 
of active patches, and that the flip-flop transition of an active patch is 
governed by the dissipative interaction caused by an electric eddy current. 
By the method of expanding the master equation in the system size together 
with the Gaussian approximation, the time course of an excitation and the 
steady N-shaped relation between current and voltage are derived from the 
ensemble theory of open systems. The fluctuation of electric current under 
a fixed voltage becomes anomalously large in the marginal state at the 
threshold potential. The fluctuation associated with an action potential 
increases sharply at the jump-up transition, but it is not so large at the 
flip-back catastrophe. The fluctuation-dissipation relation at the steady 
state of the membrane system is discussed on the basis of a variational 
principle. 

KEY WORDS:  Excitable membrane; action potential; N-shaped I -V  
relation; open system; ensemble theory; fluctuation-dissipation relation; 
Onsager principle; system-size expansion. 

1. I N T R O D U C T I O N  

Since the technique o f  in t racel lu lar  perfus ion was in t roduced  in the s tudy o f  
the  e lec t rophys io logy o f  squid giant  axon in 1961, <1) the exci tat ion o f  l iving 
m e m b r a n e  has been s tudied theoret ica l ly  in the f r amework  o f  phase  t ransi-  
t ion theory  in thermal  equilibrium52) Recent  physicochemical  studies carr ied 
out  with in ternal ly  perfused squid axon and with excitable p ro top la smic  
drople t s  i sola ted f rom Nitel la ,  however,  have revealed tha t  the process  o f  
exci ta t ion is accompan ied  by  var ia t ions  in the molecules const i tut ing the 
membrane .  ~3~ This implies  tha t  the theoret ical  t rea tment  based on the 
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equilibrium theory is insufficient to account for the process of excitation, 
and that, in turn, a concept of transition of state in a wider sense than the 
phase change of the membrane may be necessary. 

In a previous paper (a~ (hereafter called paper I) we proposed a method 
by which the excitation of a membrane is described as a transition between 
nonequilibrium steady states, where the dissipative interaction caused by the 
electric eddy current between the excited and the resting parts was taken into 
consideration3 ~ The model used was as follows. The structure of the mem- 
brane is not uniform along the axon surface, and many excited patches 
coexist with the resting parts. Each domain of the membrane is able to take 
two distinct states, i.e., excited and resting states, and both the potential 
and the electrical resistance are quite different in these two states. Therefore, 
the local membrane potential varies from one position to another along the 
membrane surface. This nonuniform distribution of the membrane emf along 
the membrane surface creates the local electric current even if there is no 
net current across the membrane. (a~ As a consequence of this long-range 
interaction by the electric current each domain changes its state from exciting 
to resting, or vice versa. The flip-flop (or birth and death) process of an active 
patch is assumed to be stochastic. In paper I, which was concerned with the 
ensemble theory of a dissipative open system, however, we did not study the 
fluctuation in physical properties such as the transmembrane current and 
the fraction of the excited region. In this paper we consider the potential 
and current fluctuations in the membrane system based on the theoretical 
model proposed in paper I. In Section 2 the master equation is derived for the 
flip-flop process of an active patch. The evolution equation and the steady 
fluctuation of the electric current are obtained for the Markovian case by 
means of the system-size expansion3 ~ The time course of the fluctuation 
accompanied by an action potential is given in Section 3. The results are 
discussed in Section 4, where the fluctuation-dissipation relation in the 
membrane system is pointed out. 

2. BIRTH AND DEATH MODEL AND ENSEMBLE THEORY OF 
EXCITABLE M E M B R A N E S  

2.1. Expansion of the Master  Equation in the System Size 

The conservation law of probability in a birth and death process of a 
macrovariable X is generally described by the following master equation: 

oP(x, = w(x, R)e(x, o 

- ~ W ( X -  R, R)P(X- R, t)) (1) 
R ) 
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For the sake of simplicity we consider the case where a single variable X is 
involved. P(X, t) is the probability density function and W(X, R) is the transi- 
tion probability per unit time from X to X + R. By use of the Kramers- 
Moyal expansion, Eq. (1) is rewritten as 

OP(X, t)/~t = - ~ (1 - e -a~ W(X, R)P(X, t) (2) 
R 

If we introduce new functions w and ~b and a variable x defined by 

w(x, R) = W(X, R)/f2, ~b(x, t) = P(X, t)/s and x = X/~ (3) 

we can expand Eq. (2) in power series of �9 (=  F2-1) to give 

O~b(x, t) = - e -  1 ~ (1 - e-"~olOX)w(x, R)~b(x, t) 
Ot 

where 

�9 ,-1 --~x C,(x)~(x, t) (4) 

C.(x) = R"w(x, R) (5) 
R 

Here the extensive quantity f~ stands for the ,system size. The set of Eqs. 
(4) and (5) is equivalent to Eq. (1). At this stage we introduce the generalized 
entropy S by the following: 

~b(x, t) oc e n's(x,~) (6) 

Then Eq. (4) is rewritten as 

~S(x,t) ~ ~ C  "x "[~S'~ 
~t = - ~ ,  (1 - e-"~s/VOw(x,R ) = ,~=1 �9 ,( )t~-~J (7) 

where the higher order terms in �9 have been neglected. This relation gives an 
expression for the generalized entropy production. Furthermore, if we denote 
the most probable path ofx(t)  byy(t)  and the variance by �9 (=  (x 2) - y2), 
the generalized entropy is given by the following equation: 

S(x, t) = -�89 - y(t)] 2 (8) 

under the Gaussian approximation. In the derivation of Eq. (8) the difference 
between y(t) and the mean value of x(t) has been neglected since the difference 
is a small quantity of the order of �9 Introducing Eq. (8) into Eq. (7) and com- 
paring the respective terms of �9 we obtain the following set of equations: 

dy 
--di = CI(y) (9) 

= c2(y) + 2 dCl(y)R (10) 
dt dy r 
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These equations are referred to as evolution equations, and the kinetic 
property of the statistical distribution is determined by them. The assumptions 
used in Eqs. (6)-(10) are equivalent to the condition of normal fluctuation, 
which obeys the central limit theorem in the same way as in the equilibrium 
system. Equations (7), (9), and (10) describe the irreversible evolution not 
only in a state near equilibrium, but also in a state far from equilibrium, 
provided that the assumptions introduced above are permissible and the 
system is in the thermodynamic limit (D --+ oo). 

In this paper we assume that the state of the membrane satisfies the 
conditions mentioned above during the process of excitation, and that the 
method of the system-size expansion is applicable to our system. 

2.2. Evolut ion Equation of  Exci tat ion 

The state of the membrane is determined by the number of excited 
patches N~ (= X) or the mean excited fraction x (=  Na/N),  where N is the 
total number of patches. The probability density P(N~, t) obeys the master 
equation given by Eq. (1). The transition probability W(Na, R) is determined 
approximately if we introduce the detailed balance conditions at the steady 
state, 

W(N,,, R)P,(N,~) = W(N~ + R, - R ) P s ( N ,  + R) (11) 

where P~ is the steady-state distribution functionY ~ As illustrated in paper I, 
the steady state is given by the following distribution function: 

Ps(N~) oc A exp(-vQ)  (12) 

where ~ is a positive constant, Q is the energy dissipation of the system, and 
A is the probability of the configuration: 

A oc N!/[N,~! ( N  - N=)!] (13) 

If  the Weiss approximation is applied to the interpatch interaction as a first 
approximation, (4) the energy dissipation Q is represented by 

Q = {Noga(V - Eo) ~ + (N  - Na)gT(V -- ET) ~} AA 

+ �89 - Er)2N,~(N-  Na) (14) 

Here ga and g, are the conductances (mho/cm 2) of the excited and resting 
domains and Ea and E~ are the emf (volts) of the excited and resting domains, 
respectively. AA is the area (em 2) of a patch, V is the clamped voltage, n is 
the number of nearest neighboring patches, and g is the interpatch conduc- 
tance, Using Eqs. (12)-(14), we obtain the transition probability as follows: 

W(N~, 1) = fN,~ exp[-(tz/2) - (a/4N)(2Na - N)] 

W(N, ,  - 1 )  = f ( N  - N,~)exp[-(t~/2) + (a/4N)(2N,~ - N)I (15) 

W(No, R) = 0 (for R e + l) 
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where ~ and tz are new parameters given by 

a = ?gn(E= - E~) 2 tz = - ~  AA{g=(V - E~) 2 - gr(V - -  E02 } (16) 

a n d f i s  a function of N~ and R. Here the transition subjected to R # + 1 is 
neglected. For  the sake of  simplicityfis taken as a constant in the subsequent 
argument. 

By the scaling x = Na/N, the transition moment C,(x)  is derived as 

f2f{(1 - 2x)cosh K(x, V) + sinh K(x,  V)}, odd n 
C,(x)  (17) 

~2f(cosh K(x, V) + (1 - 2x)sinh K(x, V)}, even n 

where 

K(x,  V) = �89 + �88 - 1) 

This allows us to write the evolution equation (9) as follows: 

dy = CI(y,  V) = 2f{(1 - 2y)cosh K(y,  V) + sinh K(y,  V)) (18) 
dt 

Equation (18) holds even if the membrane potential V varies with time, 
provided that the variation of V is slow enough in comparison with that of a 
flip-flop process of a patch. Since the time ,variation of  the membrane 
potential V must satisfy the continuity equation of electric current I (A]cm 2) 
across the membrane, we have 

d V  
C--d- [ = - { g a y ( V  - Ea) + gT(1 - y ) ( V  - E0} + I (19) 

where C is the membrane capacitance (F/cm2). The process of  excitation is 
obtained from Eqs. (18) and (19). At the steady state given by dy/dt = 0 
and dV/dt = O, I and V satisfy the following equations: 

I = g~y~(V - Ea) + g,(1 - y ~ ) ( V -  Er) (20) 

tanh K(y~, V) = 2y, - 1 (21) 

where y~ denotes the steady value of y. In the case of I = 0 there are three 
steady states satisfying Eqs. (20) and (21). The upper and lower values of  
y~ correspond to the excited (y~ = Ya) and resting states (y~ = Y0, respec- 
tively, and the intermediate state represents the threshold level (y~ = Yc and 
V = Vc). The right-hand side of Eq. (18) is approximated as follows: 

CI(y )  oc ( V  - V~)(y - y,)(y= - y )  (22) 

under the following assumption: 

Y = Y a  for Vt> V~ 

y = y ,  for V <  V~ 
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I n  the  case where  YT = 0 a n d  y~ = 1, Eq.  (18) leads to  the M a r k o v i a n  equa-  
t i on  p r o p o s e d  in  pape r  I, 

dy = k ( V -  Vc)y(1 - y )  (23) 
dt 

2.3. S teady  Fluctuat ion of the  Nonl inear  I -V  Relat ion 

E q u a t i o n s  (20) a n d  (21) lead to the  N - s h a p e d  I - V  r e l a t ion  shown  in  

Fig.  1. The  s teady f luc tua t ion  o f  the  excited f rac t ion  fl~ is g iven by  Eqs.  
(10) a n d  (17) as fo l lows:  

C2(y,) y~(1 - y~) (24) 
fls = 2Cl ' (ys )  - 1 - t~ys(1 - y~) 

Here  c~ is def ined by  Eq.  (16). O n  the  o ther  h and ,  the  s teady f luc tua t ion  o f  
electric cu r r en t  ;~ ( =  (12)  - ( 1 )  2) is der ived f r o m  Eq.  (19) as fo l lows:  

= { g o ( V -  Eo) - g , ( V -  ET)}2#~ (25) 

3~ I 

-50 0 

J 
a 

a L 

v/%) 

50 I00 . 
V(mV) 

Fig. 1. The I - V a n d  ;~-Vrelations. (a) ~ = 4, (b) ~ = 3.44, and (c) a = 2.88, The charac- 
teristic constants of the membrane were taken as follows: Ea = 70 mV, E, = - 50 mV, 
g ~ =  10 -~ mho/cm 2, gr = 5 x 10 -4 mho]cm 2, ng= 2 x 109 mho, and AA = 10 -6 
c m  2 . 
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Equations (21), (24), and (25) give the relation of A vs. V. Figure 1 shows the 
current fluctuation A for various cases of the I - V  relation. In the case where 

> 4 the I - V  relation becomes multivalued, and consequently ~ takes a 
negative value in a certain region of clamped voltage V. We limit our discus- 
sion to the case of ~ ~< 4, since an I - V  relation with hysteresis has not been 
observed in biological membranes. For  the case of c~ = 4, the current 
fluctuation A diverges at 

y~ = 1/2 {or at V = V~* =- [Ea + Er(g~/g,)~12]/[1 + (g~/ga)Z/2]} 

as follows: 

A oc 1/(1 - 2y~)2 cc 1 ] ( V -  V~*) 2 (26) 

Here V~* does not agree with V~ of Eq. (22) in general (Fig. 1 shows the case 
of  V~ < V~*), but the difference between V~ and V~* is very small. The A-V 
relation will be discussed in a later section in reference to the fluctuation- 
dissipation relation and the stability of the steady state of the membrane. 

3. P H E N O M E N O L O G I C A L  EQUATION A N D  THE T IME 
EVOLUTION OF FLUCTUATION 

In the preceding section we derived the dynamics of excitation based 
on the ensemble theory of the excitable membrane. In the dynamical or 
time-dependent phenomena of excitation, however, the non-Markovian 
and nonlocal effects play an essential role. (s) As illustrated in paper I, the 
phenomenological process of excitation is given by the following set of equa- 
tions: 

03, k l ( V  - Vc)y(1 - y )  - k2y  [V(t') - Er]e - " - v ) n  d t '  (27) 

8 V  
C-i f{  = - { g a y ( V  - Ea) + gr(1 - y ) ( V -  Er)} + I (28) 

where the ks and r are, respectively, rate constants and the time constant of 
irreversible ion accumulation at the membrane surface. Equation (27) is 
compared to Eq. (23) in the Markovian case. In this section we define the 
transition probability from a phenomenological consideration which is 
different from the assumption of detailed balance at the steady state intro- 
duced in the previous section. The scaled transition probability wa(x, 17) 
derived from the first term of the right-hand side of Eq. (27) is given by 

fk~ lx(1  - x){R(V- Vc) 
WI(X~ R) 

[0, 
+ I V -  vol}, R = _+1 

(29) 
R :/: _+1 
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There is a positive or negative jump depending on whether V > Vc or 
V < Vc. As a matter of course, wl(x, R) is nonnegative because 0 < x < 1. 
The second (non-Markovian) term of Eq. (27) is derived by use of the follow- 
ing transition probability: 

ISo wz(x, R) = k2x [V(t') - -  Er]e -(t-t')l~ dt', R = - 1 (30) 

L 0, R - 1  

Here we assumed V i> E,. Therefore the total transition probability w(x, R, t) 
is given by 

w(x, R, t) = w~(x, R) + w~(x, g) (31) 

The time dependence of the transition probability is attributed to the non- 
Markovian term of Eq. (30). 

The most probable path given by Eq. (31) is equivalent to Eqs. (27) and 
(28), which was studied in previous papers. In this section we are mainly 
concerned with the fluctuation around the most probable motion y(t). From 
Eqs. (10) and (31) the time course of the variance ~fl ( = ( x  2) - (x)  2) is 
given by 

Off = k ~ l V  _ rely(1 _ y )  + 2 k ~ ( V  - Vc)(1 - 2y)fl 
Ot 

+ k2yI'(t) - 2k2P(t)/3 (32) 

S 0  > 

-50 
2 /~ T=lO2(sec) 

~0.5 

0 2 4 T,102(sec) 

Fig.  2. Tho  t ime  courses  of  f luc tua t ion  and  of  an  ac t ion  po ten t i a l  wi th  k l  = 106, 

k2 = 6 x 109, and  r = 10 -2 see. The  dashed  l ines show the quas i s t eady  states.  The  

upper  dashed  curve  denotes  the exci ted level  and  the lower  gives the  th resho ld  level. 
Pa rame te r s  used are  as fo l lows:  Ea = 70 mV, E, = - -50  mV, g~ = 10 - s  m h o ] c m  2, 
g,  = 10 -4 m h o / c m  2, Vc = - 3 0  mV, a nd  C = 10 -6 F / c m  2. 
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where P(t) = ft 0 [V(t') - Er]e -(t-t')l~ dt' .  The time course of the fluctuation 
depends on the most probable motion, and consequently Eq. (32) must be 
calculated simultaneously with Eqs. (27) and (28). 

Figure 2 shows an example of the time evolution of an action potential 
V and of the variance/3. The current I is fixed 15 txA for 0 < t < 3 msec 
and 0 for t > 3 msec. Values of parameters are listed in the figure legend. 
Just before the transition from the resting level to the excited level the 
fluctuation grows extremely large, then decreases sharply. During excitation 
the fluctuation increases gradually with time until the flip-back catastrophe 
occurs. When the flip-back transition occurs, the fluctuation does not diverge 
but diminishes sharply. The non-Markovian term of Eq. (32) seems to keep 
the fluctuation normal at the flip-back transition. 

4. D I S C U S S I O N  

In this paper we have studied the fluctuation of the excitable membrane 
based on the theoretical model proposed in paper I. In general the fluctuation 
is closely connected to the stability of the state as well as a variational 
principle. (7'8~ In this section we will briefly discuss the stability of the mem- 
brane system. In the stationary state (~S/St  = 0) the generalized entropy 
defined by Eq. (16) must satisfy the following equation: 

aS(y~, V) (1 - y~) exp[(t*/2) - ((~/4)(2y, - 1)1 
ay, = In (33) 

y, exp[-(t , /2) + (c~/4)(2y, - 1)] 

under the condition of Eq. (15). This is easily solved to give 

S ( y , ,  V)  = Q* - (1/y)s* (34) 

where Q* is the mean value of energy dissipation: 

Q* = N{[y~ga(V - Ea) z + (1 - y~)gr(V - Er) z] AA 

+ �89 - ET)2(y~ -- y~=)} (35) 

and S* is the mixing entropy under the mean field approximation: 

S* = - N { y ,  lny ,  + (1 - y~)In (1 - y,)} (36) 

As mentioned in paper I, the variational principle given by 

~S(y~(I, V), V) = 0 (37) 

leads to the I - V  relation derived in Section 2. Here S(ys,  V) was written as 
S(y , ( I ,  V),  V) with the aid of the continuity equation (20). Equation (37) 
is compared to the Onsager principle in the linear region, 

(O/OI)(�89 2 - VI)  = 0 
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where the electrical conductance Ga is obtained from Nyquist's theorem in 
terms of the current fluctuation A: 

Ga = (4k~T)- !~ 

Here kB is the Boltzmann constant and T is the absolute temperature. In 
the membrane system also the assumption of detailed balance enables us 
to derive the analogous relation between fluctuation and dissipation~7~: 

Ga = OI/OV = [Ysga + (1 - y~)g,] - 2~,)t (38) 

As mentioned in paper I, however, ~, is not equal to ( k z T ) - 1 .  In other words, 
the current fluctuation in the membrane system arises not only from the 
thermal motion of molecules in equilibrium, but also from the nonthermal 
motion of membrane macromolecules or active patches far from equilibrium. 
The force-flux relation in nonequilibrium has a physical meaning similar 
to the state equation in an equilibrium system. Therefore, the system becomes 
unstable when Ga or ~ diverges, which follows a discrete change in physical 
properties such as a transmembrane current occurring at the critical point. 

When an action potential is elicited, the memory effect stemming from 
ion accumulation at the membrane surface plays an indispensable role. In 
this case we use the Markovian master equation with a time-dependent 
transition probability, using the approximation that the flip-flop process of  
an active patch is very fast in comparison with the time evolution of the 
membrane potential. This approximation is permissible if we limit our 
discussion to a prolonged action potential. The fluctuation becomes large 
at the moment of the drastic change of the membrane potential. Just before 
the jump-up transition the system becomes extremely unstable but is rela- 
tively stable when the flip-back transition occurs. The non-Markovian effect 
of ion accumulation causes the gradual increase of the fluctuation. At the 
same time it moderates the instability at the flip-back catastrophe. In this 
paper the discussion was limited to the simple theoretical model proposed 
in a previous paper. It would be necessary to explore the advanced theory of 
fluctuations for a more realistic model in order to understand the diversity of 
instability behavior in the membrane system. 
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